Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162
Filter
1.
Nat Commun ; 15(1): 1530, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413581

ABSTRACT

Homoeostatic regulation of the acid-base balance is essential for cellular functional integrity. However, little is known about the molecular mechanism through which the acid-base balance regulates cellular responses. Here, we report that bicarbonate ions activate a G protein-coupled receptor (GPCR), i.e., GPR30, which leads to Gq-coupled calcium responses. Gpr30-Venus knock-in mice reveal predominant expression of GPR30 in brain mural cells. Primary culture and fresh isolation of brain mural cells demonstrate bicarbonate-induced, GPR30-dependent calcium responses. GPR30-deficient male mice are protected against ischemia-reperfusion injury by a rapid blood flow recovery. Collectively, we identify a bicarbonate-sensing GPCR in brain mural cells that regulates blood flow and ischemia-reperfusion injury. Our results provide a perspective on the modulation of GPR30 signalling in the development of innovative therapies for ischaemic stroke. Moreover, our findings provide perspectives on acid/base sensing GPCRs, concomitantly modulating cellular responses depending on fluctuating ion concentrations under the acid-base homoeostasis.


Subject(s)
Brain Ischemia , Reperfusion Injury , Stroke , Male , Mice , Animals , Bicarbonates , Calcium/metabolism , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
2.
Cell Rep ; 43(2): 113715, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38306273

ABSTRACT

The zona fasciculata (zF) in the adrenal cortex contributes to multiple physiological actions through glucocorticoid synthesis. The size, proliferation, and glucocorticoid synthesis characteristics are all female biased, and sexual dimorphism is established by androgen. In this study, transcriptomes were obtained to unveil the sex differentiation mechanism. Interestingly, both the amount of mRNA and the expressions of nearly all genes were higher in females. The expression of Nr5a1, which is essential for steroidogenic cell differentiation, was also female biased. Whole-genome studies demonstrated that NR5A1 regulates nearly all gene expression directly or indirectly. This suggests that androgen-induced global gene suppression is potentially mediated by NR5A1. Using Nr5a1 heterozygous mice, whose adrenal cortex is smaller than the wild type, we demonstrated that the size of skeletal muscles is possibly regulated by glucocorticoid synthesized by zF. Taken together, considering the ubiquitous presence of glucocorticoid receptors, our findings provide a pathway for sex differentiation through glucocorticoid synthesis.


Subject(s)
Adrenal Cortex , Androgens , Female , Animals , Mice , Androgens/pharmacology , Glucocorticoids , Sex Characteristics , Adrenal Cortex Hormones , Muscle, Skeletal
3.
Pediatr Neonatol ; 65(2): 123-126, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37696728

ABSTRACT

BACKGROUND: There is limited evidence on the association between the clinical course of patent ductus arteriosus (PDA) and prostaglandin (PG) metabolites. This study aimed to determine the influence of PDA treatment on urinary PG metabolite excretion in very-low-birth-weight (VLBW) infants. METHODS: Urine samples were collected from 25 VLBW infants at 1, 3, and 7 days of age. Infants were separated into two groups: a PDA-treated group that received a cyclooxygenase-2 (COX) inhibitor (n = 12) and a control group that did not receive a COX inhibitor during the first 7 days after birth (n = 13). Urinary PG metabolite tetranor prostaglandin E2 metabolite (t-PGEM) and tetranor prostaglandin D2 metabolite (t-PGDM) levels were analyzed using liquid chromatography-tandem mass spectrometry. RESULTS: Urinary t-PGEM excretion levels were not significantly different between the groups at 1, 3, and 7 days of age. Urinary t-PGDM excretion levels at 1 day of age were higher in PDA-treated infants than in control infants (median [interquartile range]: 5.5 [2.6, 12.2] versus 2.1 [1.0, 3.9] ng/mg creatinine; p = 0.017); however, among PDA-treated infants, the levels were significantly lower at 3 and 7 days than at 1 day of age (5.5 [2.6, 12.2] versus 3.4 [1.7, 4.5] and 4.0 [1.7, 5.3] ng/mg creatinine, respectively; p < 0.05). The urinary t-PGDM excretion level in the control group did not significantly differ among the time points. CONCLUSION: PDA and COX inhibitor administration affected PG metabolism in VLBW infants. Our results indicated that urinary t-PGDM excretion was significantly associated with PDA-treatment in preterm infants.


Subject(s)
Cyclooxygenase Inhibitors , Ductus Arteriosus, Patent , Infant , Infant, Newborn , Humans , Cyclooxygenase Inhibitors/therapeutic use , Infant, Premature , Indomethacin/therapeutic use , Prostaglandins/therapeutic use , Creatinine , Ibuprofen/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Ductus Arteriosus, Patent/drug therapy , Infant, Very Low Birth Weight
4.
Ophthalmol Sci ; 4(2): 100414, 2024.
Article in English | MEDLINE | ID: mdl-38146528

ABSTRACT

Purpose: To establish a robust and objective method to evaluate (SPK) superficial punctate keratopathy in a murine dry eye model by developing a reliable photographic system. Design: Experimental study. Subjects: A murine dry eye model was generated by exorbital lacrimal gland excision. Sham-operated mice were used as healthy controls. For the sham operation, an incision was made without touching the gland. Methods: A photographic system was constructed, consisting of an LED lamp and a digital camera fitted with a zoom lens and sharp cut filter. SPK was detected by applying fluorescein solution. To validate the system, SPK was compared between dry eye mice and healthy control mice, and diquafosol (DIQUAS ophthalmic solution 3%; Santen Pharmaceutical Co., Ltd.) or cyclosporine (PAPILOCK Mini ophthalmic solution 0.1%; Santen Pharmaceutical Co., Ltd.) was used to dry eye mice. Main Outcome Measures: SPK was evaluated using the parameters of fluorescence score and fluorescein-stained area. Results: The photographs clearly indicated SPK in dry eye mice. A fluorescence score of 0 to 9 could be easily assessed, and the fluorescein-stained area was quantifiable. The fluorescein-stained area correlated with fluorescence score (correlation coefficient: 0.98), with good interobserver reliability (intraclass correlation coefficient: 0.999). The fluorescein-stained area increased significantly in dry eye mice compared with that of healthy controls (P < 0.0001). Both types of therapeutic eye drops decreased the fluorescein-stained area relative to saline-treated mice (P < 0.05 in diquafosol vs. saline; P < 0.01 in cyclosporine vs. saline). Conclusions: This newly developed system is a robust alternative for quantitative evaluation of SPK in a murine dry eye model. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

5.
Cell Rep ; 42(12): 113545, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38064339

ABSTRACT

Vitamin B12 (B12) deficiency causes neurological manifestations resembling multiple sclerosis (MS); however, a molecular explanation for the similarity is unknown. FTY720 (fingolimod) is a sphingosine 1-phosphate (S1P) receptor modulator and sphingosine analog approved for MS therapy that can functionally antagonize S1P1. Here, we report that FTY720 suppresses neuroinflammation by functionally and physically regulating the B12 pathways. Genetic and pharmacological S1P1 inhibition upregulates a transcobalamin 2 (TCN2)-B12 receptor, CD320, in immediate-early astrocytes (ieAstrocytes; a c-Fos-activated astrocyte subset that tracks with experimental autoimmune encephalomyelitis [EAE] severity). CD320 is also reduced in MS plaques. Deficiency of CD320 or dietary B12 restriction worsens EAE and eliminates FTY720's efficacy while concomitantly downregulating type I interferon signaling. TCN2 functions as a chaperone for FTY720 and sphingosine, whose complex induces astrocytic CD320 internalization, suggesting a delivery mechanism of FTY720/sphingosine via the TCN2-CD320 pathway. Taken together, the B12-TCN2-CD320 pathway is essential for the mechanism of action of FTY720.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Fingolimod Hydrochloride/metabolism , Astrocytes/metabolism , Sphingosine/metabolism , Vitamin B 12/pharmacology , Vitamin B 12/therapeutic use , Vitamin B 12/metabolism , Transcobalamins/metabolism , Transcobalamins/therapeutic use , Propylene Glycols/metabolism , Propylene Glycols/pharmacology , Propylene Glycols/therapeutic use , Vitamins , Immunosuppressive Agents/pharmacology , Receptors, Lysosphingolipid/metabolism
7.
Clin Exp Pharmacol Physiol ; 50(9): 766-775, 2023 09.
Article in English | MEDLINE | ID: mdl-37406678

ABSTRACT

Leukotriene B4 receptor type 1 (BLT1), a high-affinity receptor for leukotriene B4 (LTB4), plays an important role in inflammatory responses, including allergic airway inflammation. In this study, we examined the effect of genetic BLT1 deletion (BLT1KO) on ovalbumin (OVA)-induced allergic enteritis in mice to determine the pathogenic role of LTB4/BLT1 in allergic enteritis, a gastrointestinal form of food allergy. Repeated oral OVA challenges after sensitization with OVA and aluminium potassium sulphate induced allergic enteritis, characterized by systemic allergic symptoms (scratching, immobility and swelling), diarrhoea, colonic oedema and colonic goblet cell hyperplasia, accompanied by increased colonic peroxidase activity, colonic inflammatory cytokine expression and increased serum OVA-specific IgE levels. The severity of enteritis was significantly attenuated in BLT1KO mice compared with wild-type (WT) mice, without an increase in serum OVA-specific IgE levels. The accumulation of neutrophils, eosinophils, M2-macrophages, dendritic cells, CD4+ T cells and mast cells was observed in the colonic mucosa of allergic enteritis, and such accumulation was significantly lower in BLT1KO mice than in WT mice. BLT1 expression was upregulated and colocalized mostly in neutrophils and partly in eosinophils and dendritic cells in the colonic mucosa of allergic enteritis. These findings indicate that BLT1 deficiency ameliorates OVA-induced allergic enteritis in mice and that LTB4/BLT1 contributes to neutrophil and eosinophil accumulation in the allergic colonic mucosa. Therefore, BLT1 is a promising drug target for treating food allergies.


Subject(s)
Leukotriene B4 , Receptors, Leukotriene B4 , Mice , Animals , Ovalbumin , Receptors, Leukotriene B4/genetics , Receptors, Leukotriene B4/metabolism , Leukotriene B4/metabolism , Mice, Knockout , Inflammation , Immunoglobulin E
8.
Immunol Rev ; 317(1): 30-41, 2023 08.
Article in English | MEDLINE | ID: mdl-36908237

ABSTRACT

Leukotriene B4 (LTB4 ) was recognized as an arachidonate-derived chemotactic factor for inflammatory cells and an important drug target even before the molecular identification of its receptors. We cloned the high- and low-affinity LTB4 receptors, BLT1 and BLT2, respectively, and examined their functions by generating and studying gene-targeted mice. BLT1 is involved in the pathogenesis of various inflammatory and immune diseases, including asthma, psoriasis, contact dermatitis, allergic conjunctivitis, age-related macular degeneration, and immune complex-mediated glomerulonephritis. Meanwhile, BLT2 is a high-affinity receptor for 12-hydroxyheptadecatrienoic acid, which is involved in the maintenance of dermal and intestinal barrier function, and the acceleration of skin and corneal wound healing. Thus, BLT1 antagonists and BLT2 agonists are promising candidates in the treatment of inflammatory diseases.


Subject(s)
Asthma , Leukotriene B4 , Mice , Humans , Animals , Skin , Wound Healing , Receptors, Leukotriene B4/genetics
9.
Mol Psychiatry ; 28(7): 2848-2856, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36806390

ABSTRACT

Large-scale genome-wide association studies (GWASs) on bipolar disorder (BD) have implicated the involvement of the fatty acid desaturase (FADS) locus. These enzymes (FADS1 and FADS2) are involved in the metabolism of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are thought to potentially benefit patients with mood disorders. To model reductions in the activity of FADS1/2 affected by the susceptibility alleles, we generated mutant mice heterozygously lacking both Fads1/2 genes. We measured wheel-running activity over six months and observed bipolar swings in activity, including hyperactivity and hypoactivity. The hyperactivity episodes, in which activity was far above the norm, usually lasted half a day; mice manifested significantly shorter immobility times on the behavioral despair test performed during these episodes. The hypoactivity episodes, which lasted for several weeks, were accompanied by abnormal circadian rhythms and a marked decrease in wheel running, a spontaneous behavior associated with motivation and reward systems. We comprehensively examined lipid composition in the brain and found that levels of certain lipids were significantly altered between wild-type and the heterozygous mutant mice, but no changes were consistent with both sexes and either DHA or EPA was not altered. However, supplementation with DHA or a mixture of DHA and EPA prevented these episodic behavioral changes. Here we propose that heterozygous Fads1/2 knockout mice are a model of BD with robust constitutive, face, and predictive validity, as administration of the mood stabilizer lithium was also effective. This GWAS-based model helps to clarify how lipids and their metabolisms are involved in the pathogenesis and treatment of BD.


Subject(s)
Bipolar Disorder , Genome-Wide Association Study , Humans , Male , Female , Animals , Mice , Bipolar Disorder/genetics , Alleles , Motor Activity , Docosahexaenoic Acids , Eicosapentaenoic Acid , Polymorphism, Single Nucleotide/genetics
10.
FASEB J ; 37(2): e22789, 2023 02.
Article in English | MEDLINE | ID: mdl-36692419

ABSTRACT

Crescent formation is the most important pathological finding that defines the prognosis of nephritis. Although neutrophils are known to play an important role in the progression of crescentic glomerulonephritis, such as anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis, the key chemoattractant for neutrophils in ANCA-associated glomerulonephritis has not been identified. Here, we demonstrate that a lipid chemoattractant, leukotriene B4 (LTB4 ), and its receptor BLT1 are primarily involved in disease pathogenesis in a mouse model of immune complex-mediated crescentic glomerulonephritis. Circulating neutrophils accumulated into glomeruli within 1 h after disease onset, which was accompanied by LTB4 accumulation in the kidney cortex, leading to kidney injury. LTB4 was produced by cross-linking of Fc gamma receptors on neutrophils. Mice deficient in BLT1 or LTB4 biosynthesis exhibited suppressed initial neutrophil infiltration and subsequent thrombotic glomerulonephritis and renal fibrosis. Depletion of neutrophils before, but not after, disease onset prevented proteinuria and kidney injury, indicating the essential role of neutrophils in the early phase of glomerulonephritis. Administration of a BLT1 antagonist before and after disease onset almost completely suppressed induction of glomerulonephritis. Finally, we found that the glomeruli from patients with ANCA-associated glomerulonephritis contained more BLT1-positive cells than glomeruli from patients with other etiologies. Taken together, the LTB4 -BLT1 axis is the key driver of neutrophilic glomerular inflammation, and will be a novel therapeutic target for the crescentic glomerulonephritis.


Subject(s)
Glomerulonephritis , Leukotriene B4 , Receptors, Leukotriene B4 , Animals , Mice , Antibodies, Antineutrophil Cytoplasmic , Antigen-Antibody Complex , Chemotactic Factors , Glomerulonephritis/pathology , Neutrophils/pathology , Receptors, Leukotriene B4/metabolism
11.
J Biochem ; 173(4): 293-305, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36539331

ABSTRACT

12(S)-hydroxyheptadecatrienoic acid (12-HHT) is a bioactive fatty acid synthesized from arachidonic acid via the cyclooxygenase pathway and serves as an endogenous ligand for the low-affinity leukotriene B4 receptor 2 (BLT2). Although the 12-HHT/BLT2 axis contributes to the maintenance of epithelial homeostasis, 12-HHT metabolism under physiological conditions is unclear. In this study, 12-keto-heptadecatrienoic acid (12-KHT) and 10,11-dihydro-12-KHT (10,11dh-12-KHT) were detected as 12-HHT metabolites in the human megakaryocytic cell line MEG01s. We found that 12-KHT and 10,11dh-12-KHT are produced from 12-HHT by 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and prostaglandin reductase 1 (PTGR1), key enzymes in the degradation of prostaglandins, respectively. The 15-PGDH inhibitor SW033291 completely suppressed the production of 12-KHT and 10,11dh-12-KHT in MEG01s cells, resulting in a 9-fold accumulation of 12-HHT. 12-KHT and 10,11dh-12-KHT were produced in mouse skin wounds, and the levels were significantly suppressed by SW033291. Surprisingly, the agonistic activities of 12-KHT and 10,11dh-12-KHT on BLT2 were comparable to that of 12-HHT. Taken together, 12-HHT is metabolized into 12-KHT by 15-PGDH, and then 10,11dh-12-KHT by PTGR1 without losing the agonistic activity.


Subject(s)
Fatty Acids, Unsaturated , Receptors, Leukotriene B4 , Mice , Humans , Animals , Receptors, Leukotriene B4/metabolism , Ligands , Fatty Acids, Unsaturated/metabolism , Leukotriene B4/metabolism
12.
Nat Commun ; 13(1): 7857, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36543799

ABSTRACT

Protein modification by ubiquitin-like proteins (UBLs) amplifies limited genome information and regulates diverse cellular processes, including translation, autophagy and antiviral pathways. Ubiquitin-fold modifier 1 (UFM1) is a UBL covalently conjugated with intracellular proteins through ufmylation, a reaction analogous to ubiquitylation. Ufmylation is involved in processes such as endoplasmic reticulum (ER)-associated protein degradation, ribosome-associated protein quality control at the ER and ER-phagy. However, it remains unclear how ufmylation regulates such distinct ER-related functions. Here we identify a UFM1 substrate, NADH-cytochrome b5 reductase 3 (CYB5R3), that localizes on the ER membrane. Ufmylation of CYB5R3 depends on the E3 components UFL1 and UFBP1 on the ER, and converts CYB5R3 into its inactive form. Ufmylated CYB5R3 is recognized by UFBP1 through the UFM1-interacting motif, which plays an important role in the further uyfmylation of CYB5R3. Ufmylated CYB5R3 is degraded in lysosomes, which depends on the autophagy-related protein Atg7- and the autophagy-adaptor protein CDK5RAP3. Mutations of CYB5R3 and genes involved in the UFM1 system cause hereditary developmental disorders, and ufmylation-defective Cyb5r3 knock-in mice exhibit microcephaly. Our results indicate that CYB5R3 ufmylation induces ER-phagy, which is indispensable for brain development.


Subject(s)
Autophagy , Cytochrome-B(5) Reductase , Endoplasmic Reticulum , Ubiquitins , Animals , Mice , Autophagy/physiology , Cell Cycle Proteins/metabolism , Cytochrome-B(5) Reductase/chemistry , Cytochrome-B(5) Reductase/metabolism , Endoplasmic Reticulum/metabolism , Protein Processing, Post-Translational , Ubiquitination/physiology , Ubiquitins/chemistry , Ubiquitins/metabolism
13.
PLoS One ; 17(10): e0276135, 2022.
Article in English | MEDLINE | ID: mdl-36264904

ABSTRACT

Leukotriene B4 (LTB4) is a potent lipid mediator involved in the recruitment and activation of neutrophils, which is an important feature of tissue injury and inflammation. The biological effects of LTB4 are primarily mediated through the high-affinity LTB4 receptor, BLT1. Postoperative incisional pain is characterized by persistent acute pain at the site of tissue injury and is associated with local inflammation. Here, we compared the role of LTB4-BLT1 signaling in postoperative incisional pain between BLT1-knockout (BLT1KO) and wild-type (BLT1WT) mice. A planter incision model was developed, and mechanical pain hypersensitivity was determined using the von Frey test before and after incision. Local infiltration of neutrophils and inflammatory monocytes was quantified by flow cytometry. Inflammatory cytokine levels in the incised tissue were also determined. Mechanical pain hypersensitivity was significantly reduced in BLT1KO mice compared to BLT1WT mice at 2, 3, and 4 days after incision. LTB4 levels in the tissue at the incision site peaked 3 hours after the incision. Infiltrated neutrophils peaked 1 day after the incision in both BLT1KO and BLT1WT mice. The accumulation of inflammatory monocytes increased 1-3 days after the incision and was significantly more reduced in BLT1KO mice than in BLT1WT mice. In BLT1KO mice, Interleukin-1ß and Tumor Necrosis Factor-α levels 1 day after the incision were significantly lower than those of BLT1WT mice. Our data suggest that LTB4 is produced and activates its receptor BLT1 in the very early phase of tissue injury, and that LTB4-BLT1 signaling exacerbates pain responses by promoting local infiltration of inflammatory monocytes and cytokine production. Thus, LTB4-BLT1 signaling is a potential target for therapeutic intervention of acute and persistent pain induced by tissue injury.


Subject(s)
Hypersensitivity , Receptors, Leukotriene B4 , Mice , Animals , Receptors, Leukotriene B4/genetics , Leukotriene B4 , Interleukin-1beta , Tumor Necrosis Factor-alpha , Nociception , Inflammation , Mice, Knockout , Cytokines , Pain
14.
Commun Biol ; 5(1): 1001, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36131086

ABSTRACT

Highly unsaturated fatty acids (HUFAs) are fatty acids with more than three double bonds in the molecule. Mammalian testes contain very high levels of omega-6 HUFAs compared with other tissues. However, the metabolic and biological significance of these HUFAs in the mammalian testis is poorly understood. Here we show that Leydig cells vigorously synthesize omega-6 HUFAs to facilitate male sex hormone production. In the testis, FADS2 (Fatty acid desaturase 2), the rate-limiting enzyme for HUFA biosynthesis, is highly expressed in Leydig cells. In this study, pharmacological and genetic inhibition of FADS2 drastically reduces the production of omega-6 HUFAs and male steroid hormones in Leydig cells; this reduction is significantly rescued by supplementation with omega-6 HUFAs. Mechanistically, hormone-sensitive lipase (HSL; also called LIPE), a lipase that supplies free cholesterol for steroid hormone production, preferentially hydrolyzes HUFA-containing cholesteryl esters as substrates. Taken together, our results demonstrate that Leydig cells highly express FADS2 to facilitate male steroid hormone production by accumulating omega-6 HUFA-containing cholesteryl esters, which serve as preferred substrates for HSL. These findings unveil a previously unrecognized importance of omega-6 HUFAs in the mammalian male reproductive system.


Subject(s)
Fatty Acids, Omega-3 , Animals , Cholesterol , Cholesterol Esters , Fatty Acid Desaturases/genetics , Fatty Acids , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6 , Fatty Acids, Unsaturated , Gonadal Steroid Hormones , Hormones , Leydig Cells/metabolism , Lipase , Male , Mammals , Sterol Esterase
15.
FASEB J ; 36(4): e22236, 2022 04.
Article in English | MEDLINE | ID: mdl-35218596

ABSTRACT

Lysophosphatidic acid (LPA) exerts various biological activities through six characterized G protein-coupled receptors (LPA1-6 ). While LPA-LPA1  signaling contributes toward the demyelination and retraction of C-fiber and induces neuropathic pain, the effects of LPA-LPA1  signaling on acute nociceptive pain is uncertain. This study investigated the role of LPA-LPA1  signaling in acute nociceptive pain using the formalin test. The pharmacological inhibition of the LPA-LPA1 axis significantly attenuated formalin-induced nociceptive behavior. The LPA1  mRNA was expressed in satellite glial cells (SGCs) in dorsal root ganglion (DRG) and was particularly abundant in SGCs surrounding large DRG neurons, which express neurofilament 200. Treatment with LPA1/3 receptor (LPA1/3 ) antagonist inhibited the upregulation of glial markers and inflammatory cytokines in DRG following formalin injection. The LPA1/3 antagonist also attenuated phosphorylation of extracellular signal-regulated kinase, especially in SGCs and cyclic AMP response element-binding protein in the dorsal horn following formalin injection. LPA amounts after formalin injection to the footpad were quantified by liquid chromatography/tandem mass spectrometry, and LPA levels were found to be increased in the innervated DRGs. Our results indicate that LPA produced in the innervated DRGs promotes the activation of SGCs through LPA1 , increases the sensitivity of primary neurons, and modulates pain behavior. These results facilitate our understanding of the pathology of acute nociceptive pain and demonstrate the possibility of the LPA1 on SGCs as a novel target for acute pain control.


Subject(s)
Isoxazoles/pharmacology , Lysophospholipids/metabolism , Neuroglia/drug effects , Nociceptive Pain/prevention & control , Propionates/pharmacology , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Animals , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Female , Ganglia, Spinal , Male , Mice , Mice, Inbred C57BL , Neuroglia/metabolism , Nociceptive Pain/etiology , Nociceptive Pain/metabolism , Nociceptive Pain/pathology , Phosphorylation , Signal Transduction
18.
Biomedicines ; 9(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34829748

ABSTRACT

Sphingosine 1-phosphate (S1P), an inflammatory mediator, is abundantly contained in red blood cells and platelets. We hypothesized that the S1P concentration in the peritoneal cavity would increase especially during the menstrual phase due to the reflux of menstrual blood, and investigated the S1P concentration in the human peritoneal fluid (PF) from 14 non-endometriosis and 19 endometriosis patients. Although the relatively small number of samples requires caution in interpreting the results, S1P concentration in the PF during the menstrual phase was predominantly increased compared to the non-menstrual phase, regardless of the presence or absence of endometriosis. During the non-menstrual phase, patients with endometriosis showed a significant increase in S1P concentration compared to controls. In vitro experiments using human intra-peritoneal macrophages (MΦ) showed that S1P stimulation biased them toward an M2MΦ-dominant condition and increased the expression of IL-6 and COX-2. An in vivo study showed that administration of S1P increased the size of the endometriotic-like lesion in a mouse model of endometriosis.

19.
JACS Au ; 1(9): 1380-1388, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34604848

ABSTRACT

The biosynthetic crossover of 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) enzymatic activities is a productive pathway to convert arachidonic acid into unique eicosanoids. Here, we show that COX-2 catalysis with 5-LOX derived 5-hydroxy-eicosatetraenoic acid yields the endoperoxide 5-hydroxy-PGH2 that spontaneously rearranges to 5-OH-PGE2 and 5-OH-PGD2, the 5-hydroxy analogs of arachidonic acid derived PGE2 and PGD2. The endoperoxide was identified via its predicted degradation product, 5,12-dihydroxy-heptadecatri-6E,8E,10E-enoic acid, and by SnCl2-mediated reduction to 5-OH-PGF2α. Both 5-OH-PGE2 and 5-OH-PGD2 were unstable and degraded rapidly upon treatment with weak base. This instability hampered detection in biologic samples which was overcome by in situ reduction using NaBH4 to yield the corresponding stable 5-OH-PGF2 diastereomers and enabled detection of 5-OH-PGF2α in activated primary human leukocytes. 5-OH-PGE2 and 5-OH-PGD2 were unable to activate EP and DP prostanoid receptors, suggesting their bioactivity is distinct from PGE2 and PGD2.

20.
Biochem Biophys Res Commun ; 582: 49-56, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34689105

ABSTRACT

The efficacy of n-3 polyunsaturated fatty acids (PUFAs) in improving outcomes in a renal ischemia-reperfusion injury (IRI) model has previously been reported. However, the underlying mechanisms remain poorly understood and few reports demonstrate how dietary n-3 PUFAs influence the composition of membrane phospholipids in the kidney. Additionally, it has not been elucidated whether perilla oil (PO), which is mainly composed of the n-3 alpha-linolenic acid, mitigates renal IRI. In this study, we investigated the effect of dietary n-3 PUFAs (PO), compared with an n-6 PUFA-rich soybean oil (SO) diet, on IRI-induced renal insufficiency in a rat model. Levels of membrane phospholipids containing n-3 PUFAs were higher in the kidney of PO-rich diet-fed rats than the SO-rich diet-fed rats. Levels of blood urea nitrogen and serum creatinine were significantly higher in the ischemia-reperfusion group than the sham group under both dietary conditions. However, no significant differences were observed in blood urea nitrogen, serum creatinine, or histological damage between PO-rich diet-fed rats and SO-rich diet-fed rats. In the kidney of PO-rich diet-fed rats, levels of arachidonic acid and arachidonic acid-derived pro-inflammatory lipid mediators were lower than SO-rich diet-fed rats. Eicosapentaenoic acid and eicosapentaenoic acid-derived lipid mediators were significantly higher in the kidney of PO-rich than SO-rich diet-fed rats. These results suggest that dietary n-3 PUFAs alter the fatty acid composition of membrane phospholipids and lipid mediators in the kidney; however, this does not attenuate renal insufficiency or histological damage in a renal IRI model.


Subject(s)
Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Renal Insufficiency/diet therapy , Reperfusion Injury/diet therapy , Soybean Oil/metabolism , Animals , Arachidonic Acid/metabolism , Blood Urea Nitrogen , Creatinine/blood , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-6/administration & dosage , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Lipid Metabolism/drug effects , Male , Phospholipids/metabolism , Plant Oils/chemistry , Rats , Rats, Sprague-Dawley , Renal Insufficiency/metabolism , Renal Insufficiency/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Soybean Oil/administration & dosage , Soybean Oil/chemistry , Treatment Failure , alpha-Linolenic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...